CNN은 어떻게 특징을 뽑아내나?
하이레벨적으로 아직도 헷갈리는 것 같아서 정리해보았다. 즉, Convolution Filter들이 단계별로 복잡한 특징을 뽑아내고, 마지막에 그 특징들을 조합해 ' 컵'. '사람' 과 같은 클래스를 알아맞히는 방법이 어떻게 진행되는거지? 일단 CNN 큰 흐름Input : 이미지를 픽셀 단위로 입력 받음.Feature Extraction : 여러 단계의 Convolution과 Pooling을 거치면서, 이미지 안의 'Features'들 예를 들어, edges, textures, shapes 들을 뽑아냄.Classification : 마지막에 Fully Connected Layer(FC Layer)나 Global Average Pooling 등을 통해 "이 이미지의 최종 feature vector가 어떤 c..
딥러닝
2025. 1. 16. 15:50